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Abstract
We investigate how the transition from integrability to nonintegrability occurs
by changing the parameters of the Hamiltonian of a Heisenberg spin-1/2 chain
with defects. Randomly distributed defects may lead to quantum chaos. A
similar behaviour is obtained in the presence of a single defect out of the edges
of the chain, suggesting that randomness is not the cause of chaos in these
systems, but the mere presence of a defect.

PACS numbers: 75.10.Jm, 05.50.+q, 05.45.Mt

1. Introduction

Random matrix theory has long been used to describe the spectra of complex systems, such as
nuclei, molecules and mesoscopic solids [1]. Recently it has been used in the study of strongly
correlated spin systems [2, 3]. The statistical properties of the quantum energy spectrum are
strongly influenced by the underlying classical dynamics. The level spacing distribution of
a classical integrable system is Poissonian, PP(s) = exp(−s), while the level statistics of a
chaotic system is given by the Wigner–Dyson distribution, PWD(s) = (πs/2) exp(−πs2/4).
The Wigner–Dyson distribution is obtained in random matrix theory and it reproduces the
level repulsion of chaotic dynamics. These two distributions characterize, respectively, the
localized and the metallic phase in the Anderson model of disordered systems. At the critical
point between the two phases, an intermediate level spacing statistics occurs [4].

The problem of localization and the statistical properties of the spectra for the case of
just one particle has long been understood, but only recently has the problem of many-body
systems been addressed [2, 3]. When more than one particle is present in the system, the
interaction between them has to be taken into account. The interplay between interaction and
disorder is a challenging problem in today’s condensed matter physics and it can lead to new
and unexpected effects [5].

Here, we consider a one-dimensional Heisenberg spin-1/2 chain with defects and several
excitations. A defect corresponds to the site where the energy splitting is different from all

0305-4470/04/174723+07$30.00 © 2004 IOP Publishing Ltd Printed in the UK 4723

http://stacks.iop.org/ja/37/4723


4724 L F Santos

the others. It is obtained by applying a different magnetic field in the z direction to the chosen
site. A disordered system is characterized by the presence of one or more defects. In the
absence of defects this homogeneous system is integrable and is solved with the Bethe ansatz
[6]. Its level distribution is therefore Poissonian. As random on-site magnetic fields are turned
on and their mean-square amplitude starts increasing, the system undergoes a transition and
becomes chaotic. But by further increasing the mean-square amplitude, localization eventually
takes place and the distribution becomes Poissonian again. We determine the crossover from
integrability to quantum chaos in such a disordered spin chain. In addition, we discuss that
the cause for nonintegrability is not the randomness of the system, but the mere presence of
defects. If only one defect is placed out of the edges of the chain and if the defect excess
energy is of the order of the interaction strength, the system is also chaotic. The same sort of
transition integrable–chaotic–integrable is obtained as the defect excess energy increases.

We consider only nearest neighbour interaction. The Hamiltonian describing the system
is

H =
L∑

n=1

(
hn − J

2
δn,1 − J

2
δn,L

)
σ z

n +
L−1∑

n

J

4
�σn · �σn+1 (1)

where h̄ = 1 and �σ are Pauli matrices. There are L sites. Each site n is subjected to a magnetic
field in the z direction, giving the energy splitting hn. The chain is ideal whenever all sites
have the same energy splitting. A defect corresponds to the site whose energy splitting differs
from the others.

For simplicity, we work with an isotropic chain, that is, the coupling constant J for the
diagonal Ising interaction σ z

nσ z
n+1 is equal to the coupling constant for the XY -type interaction

σx
n σ x

n+1 + σ
y
n σ

y

n+1. This last term is responsible for propagating the excitation through the
chain. A single-particle excitation corresponds to a spin pointing up.

In this model, the z component of the total spin
∑L

n=1 Sz
n is conserved, so states with

different number of excitations are not coupled. We therefore look at the level spacing
distributions for sectors with the same number of excitations. Since we are interested in
determining if the system is integrable or chaotic, we focus on the sector with the largest
number of states, that is the sector with L/2 excitations. This is the region where chaos should
set in first.

In a very large system the boundary conditions have no effects, but numerical calculations
are limited to a finite number of sites. In a periodic (or closed) chain we found too many
degenerate states, so we decided to work with a chain with free boundaries (or open chain).
Both systems, closed or open, are known to be integrable in the absence of defects. They are
solved with the Bethe ansatz method [6]. An open chain with defects only on the edges is
also integrable [7]. Here we choose an open chain with defects of values −J/2 on the edges.
Such values should diminish border effects.

We work with L = 12 sites and 6 excitations, which gives us 924 states. A matrix of
such size, 924 × 924, is sufficient to have good statistics, as illustrated in figure 1. In both
plots we have the Poisson distribution (dot-dashed line) and the Wigner–Dyson distribution
(long-dashed line). The spacings s correspond to S/M , where M is the mean level spacing and
S is the actual spacing. Both histograms are normalized to 1. The histogram at the top of the
figure shows that the level spacings of the eigenvalues of a diagonal random matrix of such
size are well described by the Poisson distribution. The histogram at the bottom of the figure
shows that the level spacings of the eigenvalues of a random matrix of this size agree very
well with the Wigner–Dyson distribution. The random elements have a Gaussian distribution.

To find universal statistical properties of a Hamiltonian it is clear that we have to deal
with unfolded eigenvalues. Unfolded eigenvalues are renormalized eigenvalues, whose local
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Figure 1. In both graphs, the dot-dashed line gives the Poisson distribution and the long-dashed
line corresponds to the Wigner–Dyson distribution. The histogram at the top gives the level spacing
distribution for a diagonal random matrix of dimension 924 × 924. The histogram at the bottom
gives the level distribution for a random matrix of this size.

density of states is equal to unity everywhere in the spectrum. The exact unfolding procedure
consists of finding the system specific mean level density, which is then removed from the data.
Sometimes this can be a non-trivial task. An easier and commonly used procedure, which
we adopt in this paper, is the following. First, we discard some levels from the edges of the
spectrum, where there are large fluctuations. Here, with a spectrum ordered with increasing
values of energy, we only consider the energy levels from 13 to 913, and work with 900 level
spacings. The spectrum is then divided into 90 pieces of 10 level spacings each and the mean
level spacing of each section is computed. The normalized nearest neighbour spacings used
to obtain the distributions in figure 1 and in the next figures correspond to energy differences
divided by the mean level spacing of their corresponding section.

2. Randomly distributed defects

First we analyse the case of random magnetic fields along the z direction. The energy splitting
of each site is given by hn = h + dn, where dn are uncorrelated random numbers with a
Gaussian distribution: 〈dn〉 = 0 and 〈dndm〉 = d2δn,m. When d = 0 the system is integrable
and a Poisson distribution is obtained, as the histogram at the top of figure 2 shows. As
d increases the system undergoes a transition and becomes chaotic; the Wigner–Dyson
distribution is obtained, as can be seen from the histogram in the middle of figure 2. However,
as we further increase d and it becomes much larger than J , the system becomes localized. As
expected, a Poisson distribution reappears (see the bottom of figure 2). Large d/J corresponds
to a random diagonal matrix with negligible off-diagonal elements.

A more convenient way of analysing the evolution of the level spacing distributions with
respect to the ratio d/J is by using the parameter η = ∫ s0

0 [P(s) − PWD(s)] ds
/ ∫ s0

0 [PP(s) −
PWD(s)] ds, where s0 = 0.4729 . . . is the intersection point of PP(s) and PWD [3, 8]. A regular
system has η = 1 and a chaotic system has η = 0. The stars in figure 3 show the dependence
of η on d/J . There we compute the average of η, 〈η〉, for each value of d/J for 20 different
sequences of 12 Gaussian random numbers. The transition integrable–chaotic–integrable is
clear. The system is initially integrable, becomes very chaotic in the interval 0.1J < d < 0.5J

and then reaches integrability again as d becomes much larger than J . At this last step, the
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Figure 2. The histograms correspond to the actual level distribution for random on-site magnetic
fields. We choose J = 1. The dot-dashed line gives the Poisson distribution and the long-dashed
line corresponds to the Wigner–Dyson distribution.
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Figure 3. Stars give the dependence of 〈η〉 on the ratio d/J when the on-site magnetic fields are
random. Circles give the dependence of 〈η〉 on the ratio d/Jr when both diagonal and non-diagonal
elements are random.

energy splitting of each site becomes very different from all the others and the excitations
become localized.

Besides considering the site energies as random numbers, another way of introducing
disorder is by taking the non-diagonal matrix elements at random. This is shown with
circles in figure 3. These are obtained in the following way. The off-diagonal elements,
which characterize the hopping of excitations, also have a Gaussian distribution and the mean
square is given by Jr . We use a sequence of 2772 random numbers for them. Again 20
different sequences of 12 Gaussian random numbers are used for the diagonal elements,
which characterize the energy splittings. The parameter η is averaged over the 20 sequences.
The circles in figure 3 give therefore the dependence of 〈η〉 on d/Jr . In contrast to the case
discussed before, random coupling leads to chaos even when the energy splittings of all sites
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Figure 4. Top panel: the histogram corresponds to the level distribution of the Heisenberg spin-1/2
chain with a defect in the middle of the chain, on site 6. The defect excess energy is equal to the
interaction strength J . Dot-dashed and long-dashed lines give the Poisson and the Wigner–Dyson
distributions, respectively. Bottom panel: dependence of the parameter η on the ratio d6/J . The
defect is placed on site 6. The inset gives the dependence of η on the position of the defect; the
defect excess energy is J .

are the same (d = 0). Large chaoticity is kept up to d ∼ 0.5Jr and there is now only one
transition, from chaoticity to integrability. Such transition takes a little longer to happen than
in the previous case, though localization is also attained once the ratio d/Jr becomes large.

3. One single defect

In the system treated here, chaos can be associated with randomness only when the coupling
is random. In the case of a constant interaction strength, what is really responsible for the
nonintegrability of the system is not the randomness of the energy splittings, but the mere
existence of a defect, as we now discuss in this section. Let us consider again a constant
coupling. The top of figure 4 shows that a Wigner–Dyson distribution can also be obtained
when there is only one defect in the middle of the chain and the defect excess energy is of the
order of the interaction strength. For this histogram all sites have the same energy splitting
hn = h, except site 6, which has h6 = h + J .

Here too we use the parameter η to study the evolution of the level spacing distribution
with respect to the ratio d6/J . The bottom of figure 4 indicates a transitional behaviour very
similar to the case of constant coupling and random diagonal elements. The one-defect system
is initially regular, but by increasing d6 it becomes chaotic. The highest degree of chaoticity
happens when d6 ∼ J . The level repulsion now settles in more slowly than in the previous
situation of random magnetic fields. As d6 is further increased, an excitation on site 6 will
become site-localized. This means that when the ratio d6/J becomes very large there are two
kinds of states in the system: states with a localized excitation on site 6 and states with no
excitation on the defect. These two types of states are not coupled. This system becomes
equivalent to two smaller and uncoupled ideal chains, and integrability is therefore recovered.

In the inset at the bottom of figure 4, we again consider one single defect, whose excess
energy is equal to J . It shows how the parameter η depends on the position of the defect and
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confirms that the Heisenberg spin-1/2 system is integrable when it has defects placed on its
edges.

Similar results are obtained for a chain with 14 sites and one defect on site 7, but as an
illustration the smaller system with 12 sites is enough.

4. Conclusion

We have shown that in a Heisenberg spin-1/2 chain, randomly distributed defects lead to
the transition integrable–chaotic–integrable, according to the ratio d/J . When random off-
diagonal elements are also considered, there is only one transition from nonintegrability to
integrability. The transition integrable–chaotic–integrable is also observed when the coupling
is constant and there is only one defect out of the edges of the chain. The level spacing
distribution obtained in this case depends on how large the defect excess energy is in relation
to the interaction strength.

Obtaining analytical solutions for disordered spin chains is not an easy task and in many
cases is simply impossible. The algebraic version of the Bethe ansatz is often used to construct
integrable Hamiltonians [9]. The analysis of level spacing distributions should therefore be
useful to identify which real or constructed Hamiltonians are indeed integrable.

Understanding under what conditions disordered spin systems become integrable is not
just relevant for condensed matter physics, but also for quantum computation, since these
systems are commonly used to model different proposals of quantum computers (see [5] and
references therein). Chaos is a source of serious concern in quantum computation, for it can
completely destroy the operability of a quantum computer [10, 11].

Also in the context of entanglement there is great interest in disordered spin systems [12].
Using them to study how the entanglement between qubits may be affected by chaos and
localization would be very important for quantum information. This is what we intend to do
next.
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